CISMA

CISMA Srl - Società di Ingegneria

sede legale e operativa - NOI Techpark via Ipazia 2 - 39100 Bolzano +39 0471.1727086

P. IVA 02453250215

www.cisma.it - info@cisma.it

sede operativa - Palazzo Stella via A. Degasperi 77 - 38123 Trento +39 0461.1637648

cisma@pec.cisma.bz.it

Das Emissionskataster

Auftraggeber

Landesagentur für Umwelt Umwelt und Klimaschutz Amt für Luft und Lärm

Dokument	Datum	Verfasser
2020_10_EMI_INEMAR2019_BZ.s /DE	08.10.2021	Ing. Andrea Cemin
		Verantwortlicher
		Ing. Andrea Cemin

Inhaltsverzeichnis

Liste der Abbildungen	3
Liste der Tabellen	4
Allgemeiner Teil	5
Stickstoffoxide (NO _x)	13
Feinstaub (PM10, PM2,5)	19
Ammoniak (NH3)	23
Flüchtige organische Kohlenwasserstoffe (VOC)	24
Polyzyklische aromatische Kohlenwasserstoffe (PAK)	25
Schwermetalle	26
Treibhausgase	27
Brutto- und Netto-CO ₂ Emissionen	27
CH ₄ Emission	29
N ₂ O Emission	30
CO ₂ -Äquivalent und Treibhauspotential	30
Emissionen von CO2-Äquivalent	31
Evolution der CO ₂ -Emissionen in Emissionskatastern	32
Kohlenstoff-Absorption	34
Anhang	36
Sekundärschadstoffe	36
Sekundärer Feinstaub (PM10 und PM2,5)	36
Sekundäres Stickstoffdioxid (NO ₂)	36
Ozon (O ₃)	37

Liste der Abbildungen

Abbildung 1: Prozentuelle Verteilung der Makroschadstoff- und klimarelevanten
Gasemissionen im Jahre 20199
Abbildung 2: Prozentuelle Verteilung der Mikroschadstoffemissionen im Jahre
2019
Abbildung 3: Prozentuelle Verteilung der NOx-Emissionen (Jahr 2019)13
Abbildung 4: Zeitlicher Trend der NOx-Emissionen in Südtirol14
Abbildung 5: Alte und Neue Emissionsfaktoren der NOx bei Diesel-Pkw 15
Abbildung 6: Anteil unterschiedlicher Fahrzeugtypen an der NO_X Gesamtemission
der A22 (Jahr 2019)
Abbildung 7: Zusammensetzung des Schwerverkehrs (> 3,5 t) an der
Brennergrenze (ASFINAG 01/2020)
Abbildung 8: Anteil unterschiedlicher Straßentypen an der Gesamtemission von
NO _x (Jahr 2019)
Abbildung 9: Räumliche Verteilung der NOx-Emissionen im Jahre 2015 18
Abbildung 10: Durchschnittliche PM10-Emissionsfaktoren nach Fahrzeugklasse
(Autobahnregime)
Abbildung 11: Prozentuelle Verteilung der PM10-Emissionen (Jahr 2019) 21 $$
Abbildung 12: Holzverbrauch pro Jahr in den Gemeinden Südtirols21
Abbildung 13: Räumliche Verteilung der PM10-Emissionen im Jahre 2019 22
Abbildung 14: Vergleich der PM10-Emissionen nach Typ der Emissionsquelle in
den Gemeinden Latsch und Bozen (2019)23
Abbildung 15: Prozentuelle Verteilung der NH ₃ -Emissionen (Jahr 2019)24
Abbildung 16: Prozentuelle Verteilung der VOC-Emissionen (Jahr 2019) 24
Abbildung 17: Prozentuelle Verteilung der B(a)P-Emissionen (Jahr 2019) 26
Abbildung 18: Prozentuelle Verteilung der Brutto-CO ₂ -Emissionen (2019) 28
Abbildung 19: Prozentuelle Verteilung der Netto- CO_2 -Emissionen (2019)
Abbildung 20: Anteil der CO ₂ -Emissionen vom Verkehr (2019) unterschiedlicher
Straßentypen
Abbildung 21: Prozentuelle Verteilung der CH ₄ -Emissionen (Jahr 2019)
Abbildung 22: Prozentuelle Verteilung der $N_2O\text{-Emissionen}$ (Jahr 2019)30
Abbildung 23: Beitrag der einzelnen Schadstoffe auf die Emissionen von CO ₂ -
Äquivalent31
Abbildung 24: CO_2 -Äquivalent der Schadstoffe CO_2 , N_2O und CH_4 (Jahr 2019) 32

Abbildung 25: Trend der Netto- und Brutto-CO ₂ -Emissionen in den Jahren 2005 -
2007 - 2010 - 2013 - 2015 und 2019
Abbildung 26: Trend des CO ₂ -Äquivalent und seiner Komponenten in den Jahren
2005 - 2007 - 2010 - 2013 - 2015 und 2019
Abbildung 27: CO ₂ -Absorption von Hauptgruppe 11 (kt)
Liste der Tabellen
Tab. 1: Im Emissionskataster der Provinz Bozen berücksichtigte Makroschadstoffe
und Treibhausgase5
Tab. 2: Im Emissionskataster der Provinz Bozen berücksichtigte Mikroschadstoffe
6
Tab. 3: Hauptgruppen des Emissionskatasters der Provinz Bozen
Tab. 4: Makroschadstoffemissionen der Jahre 2013, 2015 und 2019 10
Tab. 5: Treibhausgasemissionen der Jahre 2013, 2015 und 2019 (die
Verbrennung von Biomasse wird als neutral betrachtet und die CO ₂ -Emissionen
als gleich Null berechnet)11
Tab. 6: NO_2 / NO_X Verhältnis im Abgas von Dieselfahrzeugen
Tab. 7: Anteil unterschiedlicher Hauptgruppen und Brennstoffe auf die B[a]p -
Gesamtemission (Jahr 2019)
Tab. 8: Für die Berechnung des CO_2 -Äquivalents verwendete Koeffizienten 30
Tab. 9: Netto-CO ₂ -Emissionen und Emissionen von CO ₂ -Äquivalent ohne den
absorbierten Anteil

Allgemeiner Teil

Das Emissionskataster ermöglicht die Darstellung von Emissionsdaten in unterschiedlicher, räumlicher und zeitlicher Auflösung für alle relevanten Luftschadstoffe:

Makroschadstoffe

Name	Summenformel	Einheit
Ammoniak	NH ₃	[t/Jahr]
Flüchtige organische Verbindungen	NMVOC	[t/Jahr]
Kohlenmonoxid	СО	[t/Jahr]
Schwefeldioxid	SO ₂	[t/Jahr]
Staub < 2.5 μm	PM2,5	[t/Jahr]
Staub < 10 μm	PM10	[t/Jahr]
Stäube insgesamt	TSP	[t/Jahr]
Stickstoffoxid	NO _x	[t/Jahr]

Treibhausgase

Name	Summenformel	Einheit
Kohlenstoffdioxid	CO ₂	[kt/Jahr]
Methan	CH ₄	[t/Jahr]
Distickstoffmonoxid	N ₂ O	[t/Jahr]

Tab. 1: Im Emissionskataster der Provinz Bozen berücksichtigte Makroschadstoffe und Treibhausgase

Mikroschadstoffe

ANORGANISCHE		
Name	Summenformel	Einheit
Arsen	As	[kg/Jahr]
Blei	Pb	[kg/Jahr]
Cadmium	Cd	[kg/Jahr]
Chrom	Cr	[kg/Jahr]
Kupfer	Cu	[kg/Jahr]
Mangan	Mn	[kg/Jahr]
Nickel	Ni	[kg/Jahr]
Quecksilber	Hg	[kg/Jahr]
Selen	Se	[kg/Jahr]
Zink	Zn	[kg/Jahr]

ORGANISCHE		
Name	Summenformel	Einheit
Benzo(a)pyren	B[a]p	[kg/Jahr]
Benzo(b)fluoranthen	B[b]F	[kg/Jahr]
Benzo(k)fluoranthen	B[k]F	[kg/Jahr]
indeno(cd)pyrene	IcdP	[kg/Jahr]
Polychlorierte Biphenyle	PCB	[kg/Jahr]
Polychlorierte Dibenzodioxine und Dibenzofurane	PCDD/F	[mg/Jahr]

Tab. 2: Im Emissionskataster der Provinz Bozen berücksichtigte Mikroschadstoffe

Zur Erstellung des Emissionskatasters wurden Emissionsquellen und damit die Verursacher der Emissionen erfasst. Anhand vorliegender Schadstoffmessungen, welche für einen Teil der genehmigungspflichtigen Anlagen jährlich durchzuführen sind, wird die im Bezugsjahr emittierte Schadstoffmenge berechnet. Liegen keine direkten Emissionsdaten vor, was für den Großteil der Quellen zutrifft, so wird die jährliche Emissionsmenge mit Hilfe sogenannter Indikatoren oder statistischer Parameter (z.B. Produktionsmenge oder die Wohnbevölkerung) und der stoff- sowie prozessspezifischen Emissionsfaktoren ermittelt. Außerdem können die Emissionsquellen, mit den dazugehörigen Emissionsdaten, zu Sektoren unterschiedlichen Detailgrades aggregiert und ausgegeben werden. Dabei wurde die europaweit angewandte CORINAIR-Klassifizierung CORINAIR / SNAP 97) verwendet, welche folgende Hauptgruppen unterscheidet:

Nr.	Hauptgruppe
1	Energieumwandlung (z.B. Fernheizwerke)
2	Nicht-industrielle Verbrennungsprozesse (z.B. der Hausbrand)
3	Industrielle Verbrennungsprozesse (z.B. die Schmelzöfen)
4	Produktionsprozesse (z.B. Prozesse zur Herstellung von Chemikalien)
5	Verteilung von Brenn- und Kraftstoffen (z.B. die Tankstellen)
6	Verwendung von Lösungsmitteln (z.B. bei Lackierungsarbeiten)
7	Straßenverkehr
8	Andere mobile Quellen und Maschinen (z.B. der Flugverkehr)
9	Abfallbehandlung und -entsorgung (z.B. Müllverbrennungsanlagen
10	Landwirtschaft (z.B. der Einsatz von Pflanzenschutzmitteln)
11	Biogene Quellen (z.B. Wälder)

Tab. 3: Hauptgruppen des Emissionskatasters der Provinz Bozen

Derzeit (Stand 2019) sind für Südtirol die Emissionskataster der Jahre 1997, 2000, 2004, 2005, 2007, 2010 2013, 2015 und 2019 verfügbar. Es ist wichtig, daran zu erinnern, dass bei der Erstellung der verschiedenen Emissionskataster-Ausgaben Aktualisierungen und neue Methoden angewandt wurden, die zu Abänderungen der Emissionsfaktoren und zur Gliederung in neue Tätigkeiten geführt haben. In bestimmten Sektoren sind die Emissionsdaten der einzelnen Berichtsjahre daher nicht direkt miteinander vergleichbar.

Ab dem Emissionskataster 2005 wurde zur Berechnung und Verwaltung der Emissionsdaten das System INEMAR (Inventario delle Emissioni in Aria) verwendet. Die Berechnung der Emissionen in die Atmosphäre wurde für punktuelle, lineare und diffuse Emissionen vorgenommen und anschließend nach Gemeinde und Brennstoff aggregiert.

Nachfolgend werden die Emissionsdaten des Jahres 2019 im tabellarischen Vergleich mit den vorausgehenden Emissionskatastern dargestellt:

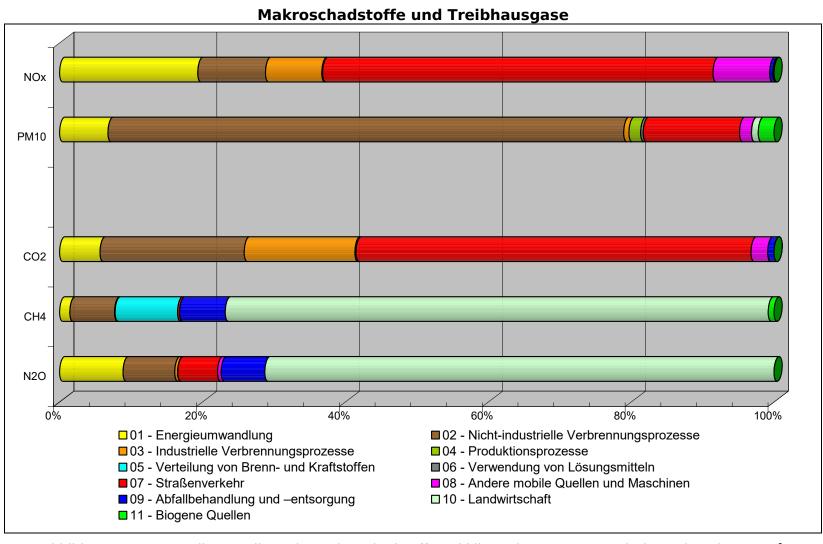


Abbildung 1: Prozentuelle Verteilung der Makroschadstoff- und klimarelevanten Gasemissionen im Jahre 2019^1

Landesagentur für Umwelt - Südtirol

¹ Sofern nicht anders angegeben, bezieht sich der Begriff CO₂ hier auf "Netto-CO₂" (siehe Seite 27)

Schadst Hauptgr	anno	CO [t]	COV [t]	NH₃ [t]	NO _X [t]	PM10 [t]	PM2,5 [t]	PTS [t]	SO ₂ [t]
	2013	448	79	-	1.142	124	119	131	49
Energieumwandlung	2015	479	99	-	1.059	122	118	127	50
	2019	493	101	0	1.206	116	112	120	57
	2013	11.531	833	30	665	1.134	1.120	1.194	132
Nicht-industrielle Verbrennungsprozesse	2015	11.337	808	30	599	1.128	1.114	1.187	122
Verbreimangsprozesse	2019	12.410	879	34	592	1.234	1.218	1.299	72
	2013	123	64	1	338	21	19	24	175
Industrielle Verbrennungsprozesse	2015	101	56	0	319	14	13	16	106
Total of manage processes	2019	92	45	0	491	13	12	14	68
	2013	47	193	-	5	44	16	50	3
Produktionsprozesse	2015	66	174	-	7	23	7	26	4
	2019	76	201	0	8	28	9	32	5
	2013	-	314	-	-	-	-	-	-
Verteilung von Brenn- und Kraftstoffen	2015	-	259	-	-	-	-	-	-
Breim and Maresconen	2019	0	351	0	0	0	0	0	0
	2013	-	1.445	-	-	15	14	20	-
Verwendung von Lösungsmitteln	2015	-	1.419	-	_	7	7	9	-
von Losungsmittem	2019	0	1.499	0	0	6	6	8	0
	2013	4.797	965	63	4.804	309	229	405	8
Straßenverkehr	2015	4.894	815	58	4.522	278	202	373	2
	2019	3.312	608	48	3.408	230	158	325	5
	2013	350	68	0	553	31	29	31	4
Andere mobile Quellen und Maschinen	2015	474	109	0	939	51	48	51	5
u	2019	361	69	0	495	29	26	29	4
	2013	11	3	3	24	1	1	1	5
Abfallbehandlung und -entsorgung	2015	3	1	3	22	0	0	0	1
and onto gaing	2019	5	1	3	28	0	0	0	2
	2013	-	3.899	5.138	12	16	5	39	-
Landwirtschaft	2015	-	3.899	5.101	8	16	5	39	-
	2019	0	3.453	5.092	9	16	5	39	0
	2013	39	26.521	0	2	38	38	38	0
Biogene Quellen	2015	37	26.520	0	2	37	37	37	0
	2019	38	25.995	0	2	38	38	38	0
	2013	17.347	34.383	5.234	7.544	1.733	1.590	1.933	376
Gesamt	2015	17.392	34.158	5.192	7.476	1.675	1.551	1.864	290
	2019	16.786	33.201	5.177	6.237	1.709	1.584	1.904	213
Variation	13-15	0,3%	-1%	-1%	-1%	-3%	-2%	-4%	-23%
	15-19	-3,48%	-3%	-0,3%	-17%	2%	2%	2%	-26 %

Tab. 4: Makroschadstoffemissionen der Jahre 2013, 2015 und 2019

Schadst Hauptgr	anno	CO ₂ [kt]	CH ₄ [t]	N ₂ O [t]
	2013	106	183	56
Energieumwandlung	2015	108	256	57
	2019	113	252	68
	2013	569	986	53
Nicht-industrielle Verbrennungsprozesse	2015	473	979	52
	2019	405	1.101	55
	2013	260	7	3
Industrielle Verbrennungsprozesse	2015	261	13	3
	2019	311	15	3
	2013	2	0	0
Produktionsprozesse	2015	3	1	0
	2019	3	1	0
	2013	-	3.104	-
Verteilung von Brenn- und Kraftstoffen	2015	-	2.747	-
	2019	-	1.538	-
	2013	1.179	88	39
Straßenverkehr	2015	1.139	69	39
	2019	1.108	50	42
	2013	51	2	5
Andere mobile Quellen und Maschinen	2015	86	2	6
	2019	47	1	4
	2013	12	1.937	31
Abfallbehandlung und -entsorgung	2015	15	1.711	37
	2019	18	1.124	47
	2013	-	13.384	553
Landwirtschaft	2015	-	13.384	541
	2019	-	13.384	544
	2013	-	144	0
Biogene Quellen	2015	-	144	0
	2019	-	144	0
	2013	2.179	19.835	741
Gesamt	2015	2.085	19.307	735
	2019	2.004	17.611	763
Variation	13-15	-4%	-3%	-1%
Variation .	15-19	-4%	-9%	4%

Tab. 5: Treibhausgasemissionen der Jahre 2013, 2015 und 2019 (die Verbrennung von Biomasse wird als neutral betrachtet und die CO_2 -Emissionen als gleich Null berechnet)

Mikroschadstoffe

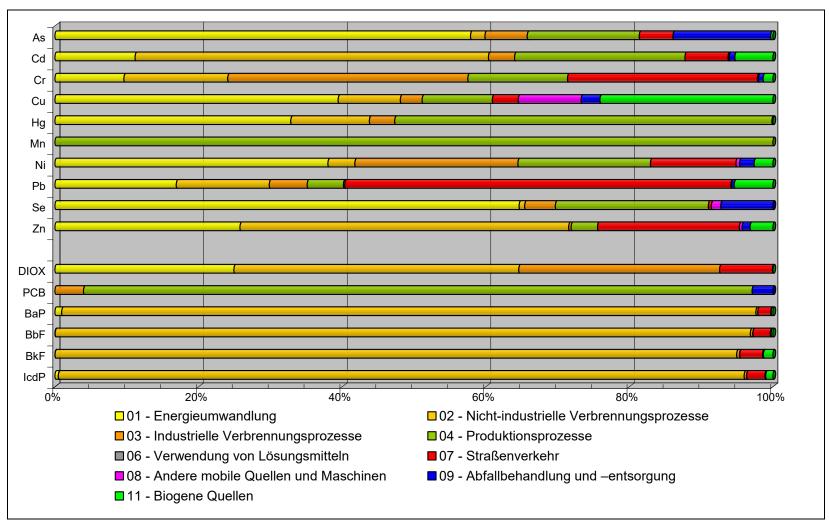


Abbildung 2: Prozentuelle Verteilung der Mikroschadstoffemissionen im Jahre 2019

Landesagentur für Umwelt - Südtirol

Aus der Grafik der Makroschadstoffe ist deutlich erkennbar, dass der Straßenverkehr und die nicht-industriellen Verbrennungsprozesse (insbesondere der Hausbrand) den Großteil der Emissionen verursachen. Vor allem in Anbetracht des Immissionsniveaus des Schadstoffes NO₂, ist festzustellen, dass die beiden Sektoren gemeinsam für einen emissionsseitigen Anteil für NO_x von mehr als 70% verantwortlich zeichnen. Ein differenzierteres Bild ergibt sich in der Einzelbetrachtung der wichtigsten Schadstoffe:

Stickstoffoxide (NO_x)

Stickoxide (NO und NO₂) belasten die menschlichen Atmungsorgane und tragen ebenfalls zur Entstehung des sauren Regens bei. Eine wesentliche Bedeutung spielen sie zudem bei der Bildung von Sekundärpartikeln in der Atmosphäre und der Entstehung des bodennahen Ozons (O₃).

 NO_x haben ihre Ursache ebenfalls in Verbrennungsvorgängen, hauptsächlich bei hohen Temperaturen. Hauptquelle ist der Straßenverkehr (Abbildung 3), bei dem die stetig restriktivere europäischen Grenzwerte für Kraftfahrzeuge zu wichtigen Verbesserungen bei Motoren und bei der Abgasbehandlung führen.

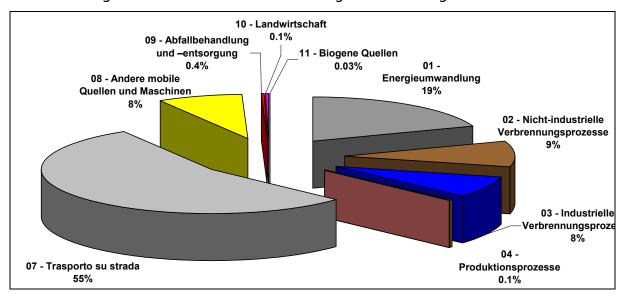


Abbildung 3: Prozentuelle Verteilung der NO_X-Emissionen (Jahr 2019)

Die signifikantesten Verbesserungen im Bereich der Emissionsverringerung gehen auf die so genannten "EURO-Klassen" und insbesondere – hinsichtlich der NOx-Emissionen – auf die Bestimmungen bezüglich der EURO-Klasse 6 zurück, da sie bedeutende Verringerungen der NOx-Emissionen auferlegen.

Im Schwerverkehrssektor sind die meisten EURO 6- LKW's bereits heute mit einem effizienten Filtersystem zur Begrenzung der NO_X-Emissionen ausgestattet (SCR – Selective Catalytic Reduction). Dabei werden die Stickoxide durch Einspritzung einer Harnstofflösung (AdBlue) in Stickstoff und Wasser umgewandelt. Auch anhand einer speziellen Abgasrückführung (ERG) in Kombination mit einem Partikelfilter können die EURO-6-Grenzwerte eingehalten werden.

Die bisher im Emissionskataster verwendeten Emissionsfaktoren haben die aufgrund des Inkrafttretens der verschiedenen EURO-Klassen erzielten Verbesserungen natürlich berücksichtigt. Dadurch wurde auch für Südtirol ein bedeutsamer Abwärtstrend bei den NOx-Emissionen geschätzt.

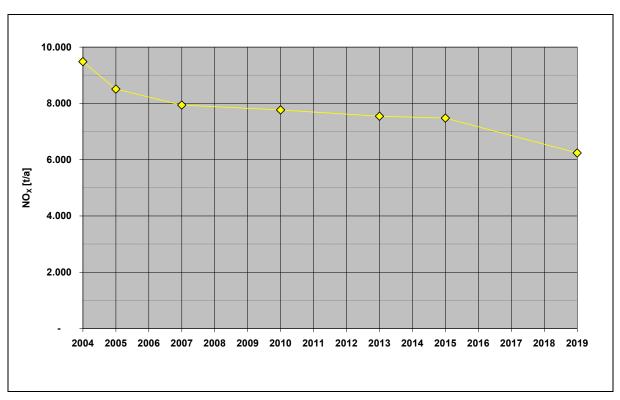


Abbildung 4: Zeitlicher Trend der NO_X-Emissionen in Südtirol

Dieser Rückgang spiegelt sich auch in den Luftqualitätsmessungen wieder, allerdings nur für den Schadstoff NO und weniger für NO₂. Im Folgenden führen wir eine Analyse an, welche eine mögliche Antwort auf diese widersprüchliche Situation zu geben versucht.

In erster Linie muss darauf hingewiesen werden, dass die bis vor kurzem verwendeten Emissionsfaktoren mit den tatsächlich von den Dieselmotoren der Pkw erzeugten Emissionen nicht überstimmten. Dies lässt sich leicht anhand des Vergleichs der durchschnittlichen Emissionsfaktoren erkennen, die in den letzten Ktastern verwendet wurden, wobei eine signifikante Überarbeitung für die Klassen Euro5 und Euro6 zu beobachten ist. (Abbildung 5).

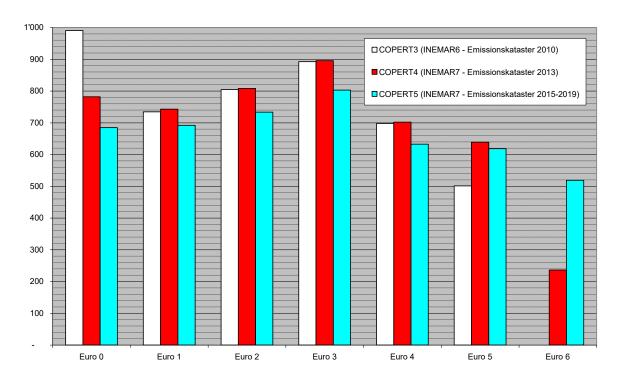


Abbildung 5: Alte und Neue Emissionsfaktoren der NO_X bei Diesel-Pkw

Dieser Unterschied ist auf die Verfügbarkeit von Messdaten von Messungen an verkehrsbeteiligten Fahrzeugen für die Euroklassen Euro 3 und Euro 4 zurückzuführen, welche in der vorausgehenden Fassung des Emissionsfaktoren Handbuchs (2004) nur geschätzt waren. Dieses Auseinanderdriften zwischen erwarteten Emissionen (die aufgrund der geltenden und künftigen Normen geschätzt wurden) und tatsächlichen Emissionen (die aus Messungen an der Straße gewonnen wurden) hat auch in den Ereignissen im Zusammenhang mit dem "Skandal der auffrisierten Dieselmotoren" seine Bestätigung gefunden, in welchen bedeutende Automobilhersteller auf Weltniveau verwickelt waren. Beim Stande der Dinge gibt es keine Anhaltspunkte dafür, dass in diese Problematik auch Schwerfahrzeuge oder Benzinfahrzeuge verwickelt sind.

Aber dieses Auseinanderdriften zwischen vorausgesehenen Emissionsfaktoren und Feldmessungen erklärt den unterschiedlichen Verlauf der Konzentrationen von NO und NO₂ nicht in befriedigender Weise. Aus diesem Grund ist es notwendig, die Analyse noch weiter zu vertiefen, indem man die NO_x-Emissionen in die beiden Komponenten (NO und NO₂) zerlegt.

In den letzten Jahren war es möglich, festzustellen, wie das Verhältnis NO₂/NO der verkehrsbedingten Emissionen sich nach und nach zugunsten des NO₂ verschoben hat. Dieses Verhältnis ist wichtig, weil der Grenzwert für den Schutz der menschlichen Gesundheit nur für NO₂ festgelegt ist.

Der Grund für diese Zunahme der NO₂-Emissionen ist in der Anwendung des oxydierenden Katalysators bei Dieselfahrzeugen zu suchen. Dieses System, das ab der Euroklasse 3 angewandt wird, dient zur Verringerung der Emission von Kohlenwasserstoffen (HC) und Kohlenmonoxyd (CO), oxydiert aber als Nebenwirkung das NO zu NO₂. Das höchste Verhältnis zwischen NO₂ und NO findet man bei Diesel-Pkw ab der Klasse Euro 3 (Tab. 6).

Klasse	% NO ₂
Euro 0	8%
Euro 1	8%
Euro 2	11%
Euro 3	35%
Euro 4	40% - 46%
Euro 5	30 - 34%
Euro 6	35%

Tab. 6: NO₂ / NO_X Verhältnis im Abgas von Dieselfahrzeugen²

Die Zunahme der NO₂-Emissionen beim Auspuff hat keine direkt proportionale Zunahme der Konzentrationen in der Luft zur Folge, und dies aufgrund der chemischen Reaktionen in der Atmosphäre (Reaktionen zwischen NO, NO₂, O₃, OH-Radikalen), welche kein 1:1-Verhältnis zwischen NO₂-Emission und -Immission zulassen. Trotzdem ist diese Zunahme sicher ein Hindernis für die Verringerung der NO₂-Konzentrationen in der Atmosphäre, auch bei einer Verringerung der Gesamtemissionen von NO_x.

Bereits erwähnt wurde der starke Einfluss des Straßenverkehrs auf die Gesamtemissionen von NO_x. Von besonderer Bedeutung hierbei ist die A22 von Brenner bis Salurn, welche die mit Abstand meistbefahrene Verkehrsachse darstellt. Sehr negativ auf die Emissionssituation wirkt sich dabei der hohe Schwerverkehrsanteil von ca. 26% aus, welcher 52% der insgesamt auf der A22 emittierten NO_x- Menge ausmacht:

-

 $^{^{2}}$ Institute of Internal Combustion Engines and Thermodynamics. (2019) *Update of emission factors for HBEFA Version 4.1*

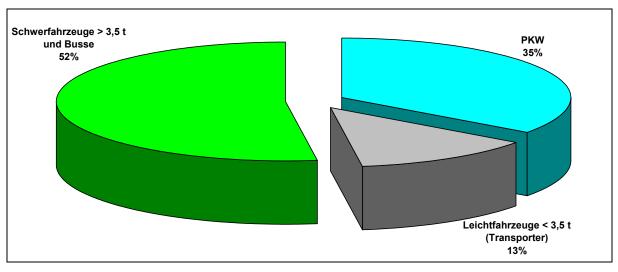


Abbildung 6: Anteil unterschiedlicher Fahrzeugtypen an der NO_X Gesamtemission der A22 (Jahr 2019)

Auf jeden Fall wird das Verhältnis zwischen den Emissionen der Schwerfahrzeuge und jenen der Leichtfahrzeuge in den nächsten Jahren eine Änderung erfahren. Nicht nur deswegen, weil die EURO-6-Normen für Schwerfahrzeuge 20 Monate vor jenen für Leichtfahrzeuge in Kraft getreten sind, sondern vor allem deswegen, weil der Auswechslungsprozentsatz der auf der Autobahn verkehrenden Schwerfahrzeuge entschieden höher ist als jener der Pkw.

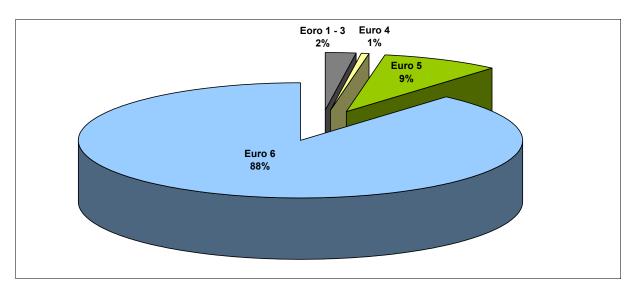


Abbildung 7: Zusammensetzung des Schwerverkehrs (> 3,5 t) an der Brennergrenze (ASFINAG 01/2020)

So kommt es, dass schon ganz wenige Jahre nach dem Inverkehrbringen der EURO-6-Fahrzeuge ihr Vorhandensein auf der Brennerachse bereits vorwiegend ist. Daraus folgt, dass die Abnahme der NO_x-Emissionen bei den Schwerfahrzeugen viel schneller vor sich geht als bei den Leichtfahrzeugen.

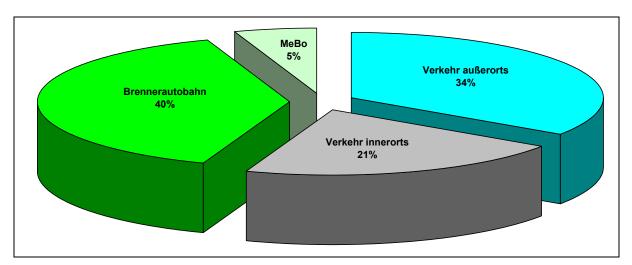


Abbildung 8: Anteil unterschiedlicher Straßentypen an der Gesamtemission von NO_X (Jahr 2019)

Durch die Darstellung der räumlichen Verteilung der NO_x -Emissionen sind vielbefahrene Straßen deutlich erkennbar:

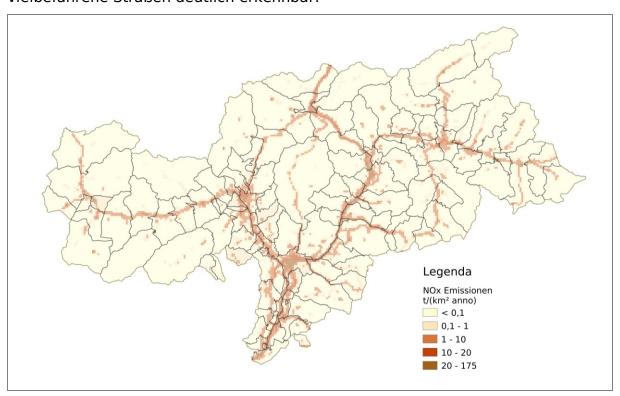


Abbildung 9: Räumliche Verteilung der NO_X-Emissionen (Jahr 2019)

Stickstoffoxide werden von Verbrennungsanlagen zum größten Teil als NO emittiert und in der Atmosphäre zu NO_2 umgewandelt. Die wichtigste Reaktion dabei ist jene von NO mit O_3 zu NO_2 und O_2 . So kann sich eine hohe

NO-Konzentration positiv auf den Abbau des bodennahen Ozons auswirken, allerdings ist gleichzeitig eine höhere NO₂-Konzentration zu erwarten. Gegenläufig dazu wirken die Abbaureaktion von NO₂ zu NO mit Hilfe der Sonnenstrahlung und die Bildung von Ozon durch Sauerstoffradikale. Diese Zusammenhänge führen dazu, dass hohe oder niedrige NO bzw. NO₂-Belastungen nicht alleine auf das Fehlen oder Vorhandensein von Emissionsquellen zurückzuführen sind.

Feinstaub (PM10, PM2,5)

Per Definition sind PM10 und PM2,5 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 bzw. 2.5 µm eine Abscheidewirksamkeit von 50% aufweist. Partikel dieser Größe sind besonders gesundheitsschädlich, da sie bis tief in die Lunge gelangen können. Deren Zusammensetzung ist sehr verschiedenartig und hängt stark vom Entstehungsprozess ab: Rußpartikel aus den Diesel-Fahrzeugen, der Verbrennung von Holz, Pollen der Pflanzen oder Saharastaub sowie sekundäre Partikel, welche sich z.B. durch die Freisetzung von Ammoniak aus landwirtschaftlichen Prozessen bilden können, sind nur ein Auszug aus der Vielzahl an unterschiedlichen Staubteilchen in der Atmosphäre. Die Inhaltsstoffe der Teilchen sind auch bestimmend für deren Gefährdungspotential: So wirken sich etwa mit giftigen Metallen oder polyzyklischen aromatischen Kohlenwasserstoffen (PAK) versetzte Partikel besonders negativ auf die menschliche Gesundheit aus. Ein weiterer Aspekt in Bezug auf die Gefährlichkeit von Feinstaub ist dessen Größe, wobei die kleinsten Teilchen bis in die Lungenbläschen penetrieren können. Aus diesem Grunde ist auch die Untersuchung des Schadstoffen PM2,5 sehr wichtig.

Hierzulande sind der motorisierte Verkehr und der Hausbrand für den Großteil der Feinstaubemissionen verantwortlich, aber im Laufe der Jahre verschiebt sich dieses Verhältnis zunehmend in Richtung des Hausbrandes. Anteil an den Gesamtfeinstaubemissionen im Jahre 2000 noch 26 %, während aus den Daten Emissionskatasters 2007 ein Anteil von 50 % hervorgeht. Emissionskataster 2013 und 2015 setzte sich dieser Wert bei 67% fest und schließlich bei 72% im Jahre 2019. Der prozentuelle Anteil des Verkehrs sank hingegen von 36 % im Jahre 2000 auf 29 % im Jahre 2007, auf 18% im Jahre 2013 auf 17% im Jahre 2015 und auf 13% im Jahre 2019. Hinsichtlich des Verkehrs ist hinzuweisen, daß trotz die starken Verringerungen Feinstaubemissionen aufgrund der Verbesserungen in der Abgasbehandlung (z.B.

Partikelfilter), gibt es auch eine Staubkomponente (Bremsen , Reifen und Straßenbelag), die durch die Erneuerung der Fahrzeuge nicht wesentlich zurückgegangen ist und daher in den letzten Jahren zum Hauptbestandteil der emittierten Partikel geworden ist. Für 2019 werden schätzungsweise nur 28% des auf Verkehr entfallenden PM10 zum Auspuff abgegeben.

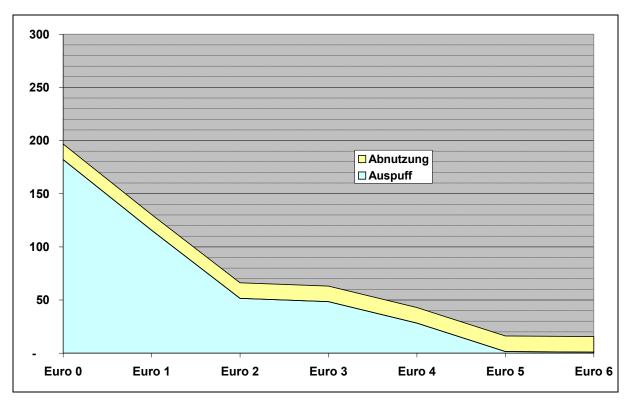


Abbildung 10: Durchschnittliche PM10-Emissionsfaktoren nach Fahrzeugklasse (Autobahn A22)

Gleichzeitig haben die immer stärkere Verwendung von Biomasse zusammen mit der immer noch zu sanften Regulierung von Holzverbrennungsanlagen im unteren Leistungsbereich, allen voran die Einzelraumfeuerungen wie z.B. Kaminoder Kachelöfen, den Beitrag dieser Emissionsquelle ansteigen lassen.

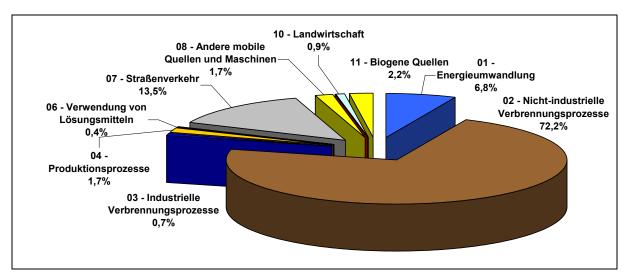


Abbildung 11: Prozentuelle Verteilung der PM10-Emissionen (Jahr 2019)

Bewertet man die Feinstaubemissionen in Abhängigkeit von der Art des verwendeten Brennstoffs, wird der Beitrag der Holzverbrennung ersichtlich, welche 79% des PM10 erzeugt, der im Jahre 2013 vom Sektor der nichtindustriellen Verbrennung (72% vom Hausbrand) emittiert wurde.

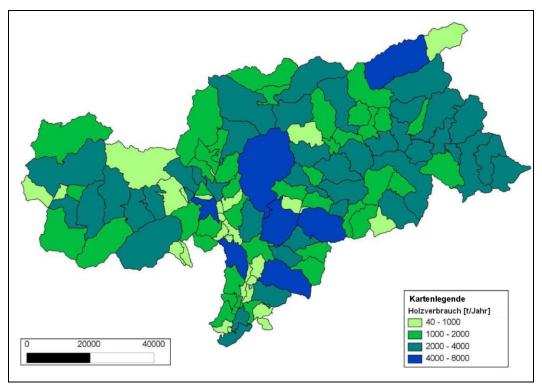


Abbildung 12: Holzverbrauch pro Jahr in den Gemeinden Südtirols

Quelle: TIS / Bereich Energie und Umwelt

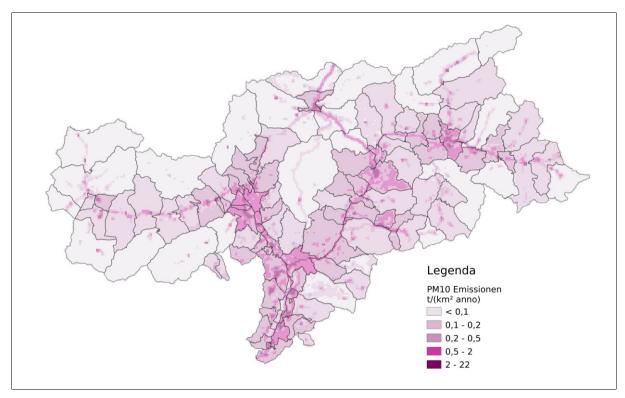


Abbildung 13: Räumliche Verteilung der PM10-Emissionen im Jahre 2019

Die Holzverbrennung ist in Landgemeinden viel stärker verbreitet als in stark städtisch geprägten Gemeinden. Vergleicht man nun den PM10- Ausstoß einer stark ländlich geprägten Gemeinde wie z.B. Latsch mit einem Stadtgebiet (Bozen), erhält man zwei deutlich verschiedene Emissionsbilanzen in Bezug auf die Emissionsquellen, die für den PM10- Ausstoß am meisten verantwortlich sind. Auch die räumliche Verteilung der Feinstaubemissionen macht ersichtlich, dass der eigentlich zu erwartende große Unterschied zwischen Ortschaften mit hohem Verkehrsaufkommen oder einer hohen Bevölkerungsdichte (etwa Bozen oder Meran) und Landgemeinden zum Teil durch die starke Verbreitung von Holzöfen in ländlichen Gebieten ausgeglichen wird. Bei einem Vergleich der Emissionsmappen von NOx und PM10 wird dieser Unterschied klar deutlich. Die Luftqualitätsmessungen der fixen Stationen in Südtirol bestätigen dies mit den Daten von PM10 und PM2,5.

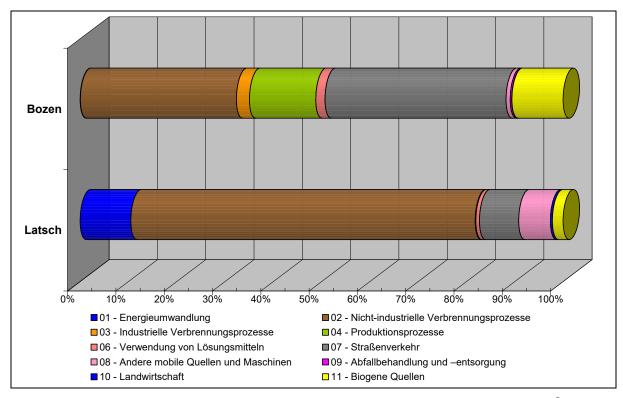


Abbildung 14: Vergleich der PM10-Emissionen nach Typ der Emissionsquelle³ in den Gemeinden Latsch und Bozen (2019)

Ammoniak (NH₃)

Ammoniak ist ein farbloses und stark riechendes Gas, welches giftig ist. Es entsteht insbesondere beim Abbau von tierischen Exkrementen. Laut Emissionskataster wird somit der Großteil dieser Emissionen von der Landwirtschaft verursacht. In der Luft reagiert NH₃ mit Säuren und bildet die entsprechenden Salze aus (Ammoniumsalze), welche als sekundäre Partikel wiederum an der Feinstaubbelastung beteiligt sind.

-

³ Es sei daran erinnert, daß Hauptgruppe *01* "*Energieerzeugung und Brennstoffumwandlung*" Biomasse-Fernheizkraftwerke einschließt, während der Hauptgruppe *02* "*Nicht-industrielle Verbrennungsprozesse*" Hausbrand umfasst.

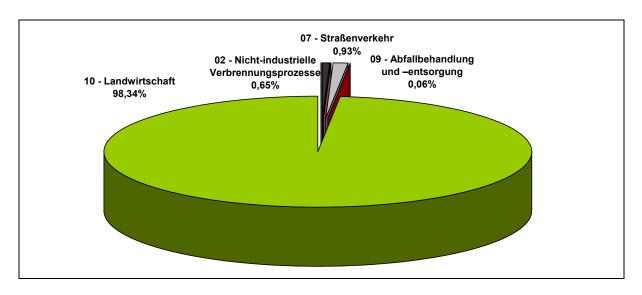


Abbildung 15: Prozentuelle Verteilung der NH₃-Emissionen (Jahr 2019)

Flüchtige organische Kohlenwasserstoffe (VOC)

Als flüchtige organische Verbindungen werden organische, also kohlenstoffhaltige Stoffe verstanden, welche leicht verdampfen bzw. bereits bei niedrigen Temperaturen als Gas vorliegen. Bei der Abkürzung NMVOCs (non methane volatile organic compounds) wird das Gas Methan (CH₄) aus der Gruppe der VOCs ausgeklammert. Relevant sind die flüchtigen organischen Verbindungen v.a. als Vorläufersubstanzen für die Bildung von bodennahem Ozon.

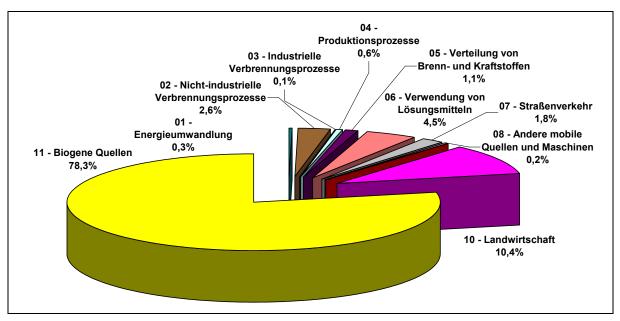


Abbildung 16: Prozentuelle Verteilung der VOC-Emissionen (Jahr 2019)

In der Gruppe der VOC finden wir auch das Benzol, für welches die Normen auch einen Grenzwert für die Luftqualität vorsehen. Es handelt sich um einen farblosen, flüssigen Stoff mit charakteristischem Geruch, welcher dem Benzin hinzugefügt wird, um dessen Oktanzahl zu erhöhen. Da er leicht verdunstet, kommt es zu Benzolemissionen beim Auftanken an Tankstellen oder einfach bei seiner Verwendung als Kfz-Treibstoff.

In Südtirol sind der Wald und die Landwirtschaft die Hauptverursacher der VOC-Emissionen. Vor allem Nadelbäume geben Terpene und andere, zu dieser Stoffgruppe zählende Naturstoffe ab. Anthropogen bedingte VOC-Emissionen sind hauptsächlich auf unvollständige Verbrennungsprozesse im Hausbrand und dem Straßenverkehr sowie auf die Verwendung von Lösungsmitteln, Farben und Lacken zurückzuführen.

Durch Einführung der Richtlinie 1999/13/EG über die Begrenzung von Emissionen flüchtiger organischer Verbindungen von bestimmten Tätigkeiten und Anlagen, eine verstärkte Lösungsmittelrückgewinnung in gewerblichen Prozessen, die Gasrückführung auf den Tankstellen, die Verwendung von lösemittelfreien Lacken sowie Verbesserungen in der Motor- und Katalysatortechnik hatten in den letzten Jahrzehnten einen deutlichen Rückgang der VOC-Emissionen zur Folge.

Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Die Stoffgruppe der polyzyklischen aromatischen Kohlenwasserstoffe umfasst mehrere hundert Einzelsubstanzen, deren Gemeinsamkeit das aus mehreren Benzolringen bestehende Molekülgerüst ist. Genauso wie Kohlenmonoxid werden PAK hauptsächlich bei unvollständigen Verbrennungsprozessen gebildet. Mehrere PAK wurden von der Organisation IARC (1987) als möglicherweise krebserregend eingestuft, während Benzo(a)pyren als nachweislich kanzerogen klassifiziert ist. Dies ist ein Mitgrund, weshalb B[a]P als Leitsubstanz für die gesamten PAK gewählt wurde und somit auch in den Luftmessstationen gemessen wird.

Die wichtigste Quelle polyzyklischer aromatischer Kohlenwasserstoffe stellt in Südtirol der Hausbrand dar. Insbesondere kleinere Holzöfen, welche in den meisten Fällen über keine automatische Brennstoffzufuhr und Luftregulierung verfügen, neigen zu einer unterstöchiometrischen und somit unvollständigen Verbrennung, was zu einem erhöhten Ausstoß dieses Schadstoffes führt:

Brennst. Hauptgr.	bleifreies Benzin	Diesel	Holz und holzähnliche Brennstoffe	Siedlungsabfälle	Gesamt
Energieumwandlung			0,9%		0,9%
Nicht-industrielle Verbrennungsprozesse			96,7%		96,7%
Industrielle Verbrennungsprozesse			0,1%	0,2%	0,3%
Straßenverkehr	0,1%	1,6%		0,1%	1,8%
Andere mobile Quellen und Maschinen		0,1%			0,1%
Biogene Quellen				0,2%	0,2%
Gesamt	0.1%	1.7	97.7	0.5	100%

Tab. 7: Anteil unterschiedlicher Hauptgruppen und Brennstoffe auf die B[a]p - Gesamtemission (Jahr 2019)

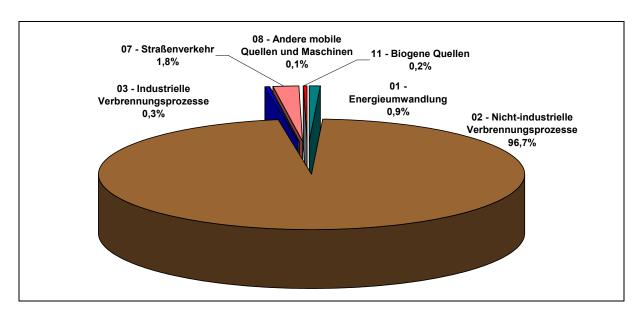


Abbildung 17: Prozentuelle Verteilung der B(a)P-Emissionen (Jahr 2019)

Schwermetalle

Hohe Schwermetallkonzentrationen treten normalerweise in der Nähe von größeren Industriestandorten auf, wie sie in Südtirol nicht vorzufinden sind. Lediglich in der Gewerbezone der Gemeinde Bozen befinden sich einzelne größere Industriebetriebe, wie etwa die Stahlwerke Valbruna. Zudem wurden durch Einsatzverbot von verbleitem Benzin und dem hierzulande nicht zulässigen

Einsatz von Kohle als Brennstoff sowie den verstärkten Einbau von Staubfiltern in Industrie- und Gewerbebetrieben wesentliche Maßnahmen zur Reduktion der Schwermetallemissionen unternommen.

Treibhausgase

Treibhausgase tragen durch ihren Treibhauseffekt zur Erwärmung der Erdoberfläche bei.

Der bedeutsamste Stoff für dieses Phänomen ist das Kohlendioxyd, CO₂, aber auch andere Stoffe, wie das Methan und das Distickstoffmonoxid, können, auch wenn sie in geringeren Mengen emittiert werden, einen erheblichen Beitrag leisten.

Brutto- und Netto-CO₂ Emissionen

Im Rahmen des Emissionskatasters werden als Brutto-CO₂-Emissionen alle Kohlendioxydemissionen gerechnet einschließlich jener aufgrund der Verbrennung von erneuerbaren Brennstoffen, wie den Biomassen, welche im Allgemeinen in den Treibhausgasbilanzen nicht berücksichtigt werden; per Definition unterscheiden sich diese Brutto-Emissionen von den CO₂-Netto-Emissionen, worunter man jene versteht, die von nicht erneuerbaren Energiequellen emittiert werden.

Diese Unterscheidung wird vorgenommen, da die Verbrennung von Biomassen keine zusätzlichen CO₂-Emissionen in die Atmosphäre mit sich bringt, weil die Biomasse ein biogener Brennstoff ist, d.h. durch Photosynthese aus dem bereits in der Atmosphäre vorhandenen Kohlenstoff erzeugt wird. Dagegen wird durch industrielle Produktionsprozesse durch Kontakt oder durch die Verbrennung fossiler Treibstoffe neues CO₂ in die Atmosphäre emittiert, das von Kohlenstoff herstammt, der zuvor mit anderen chemischen Elementen verbunden war und zum Beispiel den im Untergrund lagernden Brennstoff bildete oder den Rohstoff, von dem die Verarbeitungsderivate zu erzielen waren (wie beim Prozess der Dekarbonatisierung des Zements).

Die Grafik in Abbildung 18 führt die Brutto-CO₂-Emissionen an; man kann feststellen, dass die beiden am stärksten vertretenen Sektoren der Verkehr und der Hausbrand sind.

Hinsichtlich der Beiträge zu den Netto-CO₂-Emissionen, die in Abbildung 19 angeführt werden, kann eine vorwiegende Rolle des Verkehrs festgestellt werden, während die Sektoren Hausbrand und Energieerzeugung, bei denen die

mit der Verbrennung von Holzbiomassen verknüpften Emissionen nicht miteingerechnet werden, ein geringeres Gewicht haben.

Bewertet man den Einfluss der einzelnen Straßentypen auf die Netto-CO₂-Emissionen, stellt man fest, dass die Autobahn ungefähr ein Drittel ausmacht (Abbildung 20).

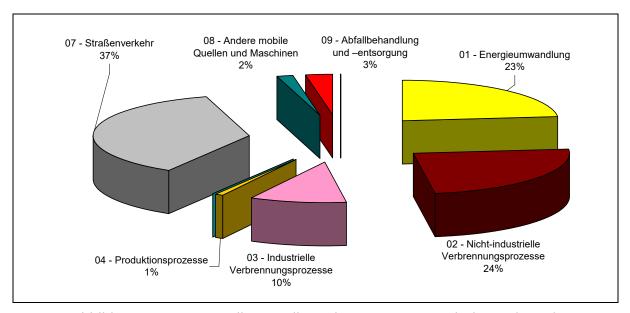


Abbildung 18: Prozentuelle Verteilung der Brutto-CO₂-Emissionen (2019)

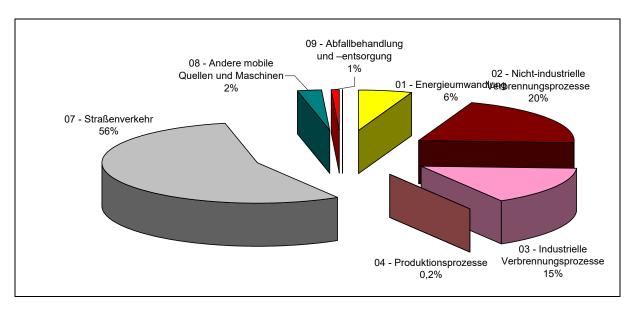


Abbildung 19: Prozentuelle Verteilung der Netto-CO₂-Emissionen (2019)

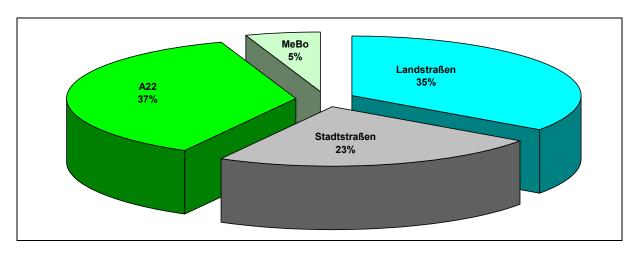


Abbildung 20: Anteil der CO₂-Emissionen vom Verkehr (2019) unterschiedlicher Straßentypen

CH₄ Emission

Methan entstammt in Südtirol zu 76% aus der Nutztierhaltung und dort größtenteils dem anaeroben Abbau der anfallenden tierischen aus Ausscheidungen sowie durch den Verdauungsprozess der Wiederkäuer. Das auf den Deponien durch den Abbau des Biomülls gebildete Methan wird größtenteils mit besonderen Anlagen abgesaugt und anschließend verbrannt. Eine Rolle spielen auch die Gasverteilernetze, bei denen durch Verluste eine beachtliche Menge an Methan entweicht. Eine geringere Bedeutung hat das Faulen organischer Stoffe unter Luftabschluss in natürlichen Ökosystemen, wie etwa Sümpfen.

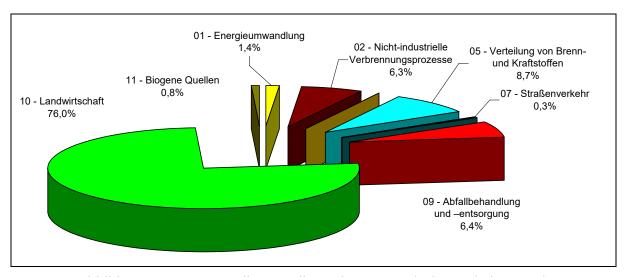


Abbildung 21: Prozentuelle Verteilung der CH₄-Emissionen (Jahr 2019)

N₂O Emission

Die Emissionen von Distickstoffmonoxid (N₂O), auch Lachgas genannt, gehen zum größten Teil auf landwirtschaftliche Tätigkeiten zurück. Bei Sauerstoffmangel wird Stickstoffdünger im Boden in Lachgas umgewandelt und entweicht in die Atmosphäre:

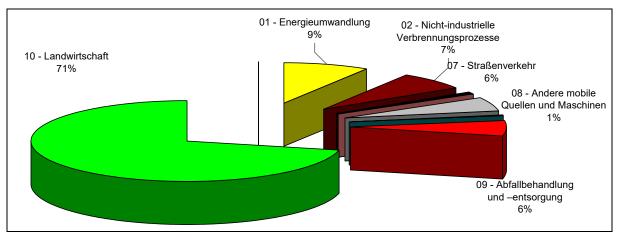


Abbildung 22: Prozentuelle Verteilung der N2O-Emissionen (Jahr 2019)

CO2-Äquivalent und Treibhauspotential

Wie schon gesagt, gibt es mehrere Stoffe, welche zum Treibhauseffekt beitragen können; im Emissionskataster werden folgende berücksichtigt:

- Kohlendioxid (CO₂),
- Methan (CH₄),
- Distickstoffmonoxid (N₂O),

Für die Einschätzung ihres Treibhauspotentials verwendet man einen Index namens GWP (Global Warming Potential), der in Tab. 8 angeführt wird.

Luftschadstoffe	CH ₄	CO ₂	N ₂ O
CO ₂ -Äquivalent	21	1	310

Tab. 8: Für die Berechnung des CO₂-Äquivalents verwendete Koeffizienten

Hierauf werden die Emissionen der verschiedenen Treibhausgase zusammengefasst und mittels des Indikators CO₂eq (CO₂-Äquivalent), angeführt, der eine Summe der Treibhausgase darstellt, welche nach ihrem Treibhauspotential gewogen werden; diese Summe kann zusammenfassend mit folgender Formel dargestellt werden:

$$CO_2eq = \sum (GWP_i \cdot E_i)$$

wobei:

 $GWP_i = Global Warming Potential;$

Ei = Emission des Treibhausschadstoffs i.

Emissionen von CO₂-Äquivalent

Wie man sehen konnte, haben Treibhausgase einen mehr oder weniger ausgeprägten Treibhauseffekt, daher können ihre Emissionen als CO₂-Äquivalent dargestellt werden. Auf diese Weise kann man ein zusammenfassendes Bild der wegen ihres Beitrags zum Treibhauseffekt relevanten Emissionen erzielen.

Der Beitrag der einzelnen Stoffe auf die Emissionen von CO₂-Äquivalent wird in Abbildung 23 angeführt.

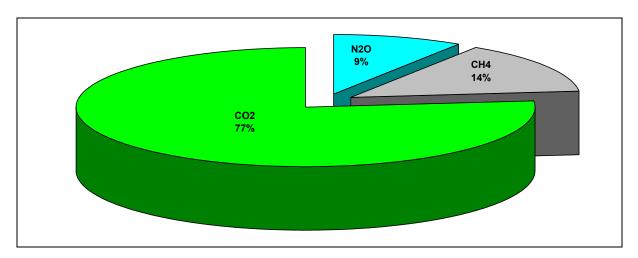


Abbildung 23: Beitrag der einzelnen Schadstoffe auf die Emissionen von CO₂-Äquivalent

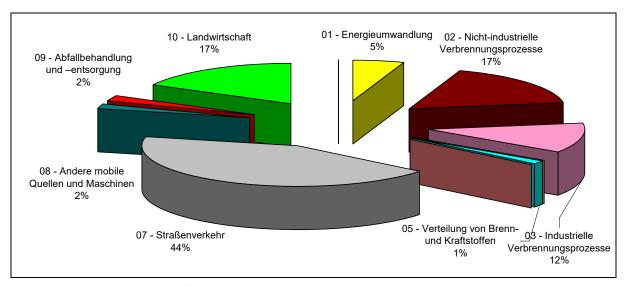


Abbildung 24: CO₂-Äquivalent der Schadstoffe CO₂, N₂O und CH₄ (Jahr 2019)

Brennbare Biomassen gelten im Hinblick auf die Berechnung des CO₂ - Äquivalents als neutral und werden bei der Berechnung nicht berücksichtigt.

Evolution der CO₂-Emissionen in Emissionskatastern

Der Trend der für die durchgeführten Katasten geschätzten Netto-CO₂-Emissionen scheint zu schwanken, da sich die Schätzmethode im Laufe der Jahre geändert hat, indem verschiedene Emissionsfaktoren übernommen und unterschiedliche Indikatoren anders berechnet wurden (Abbildung 29 Das Brutto-CO₂ zeigt einen leicht steigenden Trend, hauptsächlich aufgrund der Zunahme der Anzahl der Biomasse-Fernwärmeanlagen, weshalb die Differenz zwischen Brutto- und Netto-CO₂ allmählich vergrößert hat.

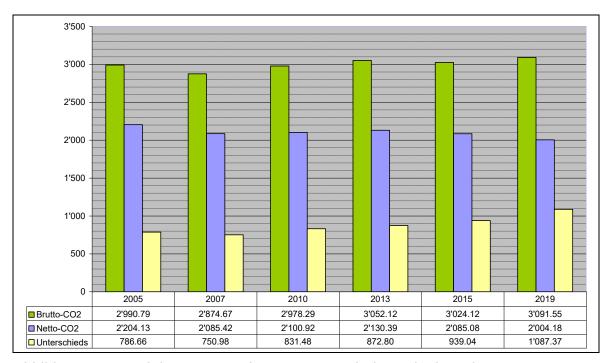


Abbildung 25: Trend der Netto- und Brutto- CO_2 -Emissionen in den Jahren 2005 - 2007 - 2010 - 2013 - 2015 und 2019 4

Der Trend der CO₂-Äquivalent-Emissionen und ihrer Komponenten CO₂, N₂O und CH₄ zeigt einen insgesamt abnehmenden Trend mit einer Gesamtreduktion von 11% für da Jahre 2019 im Vergleich zu dem ursprünglich für 2005 berechneten Wert (Abbildung 26).

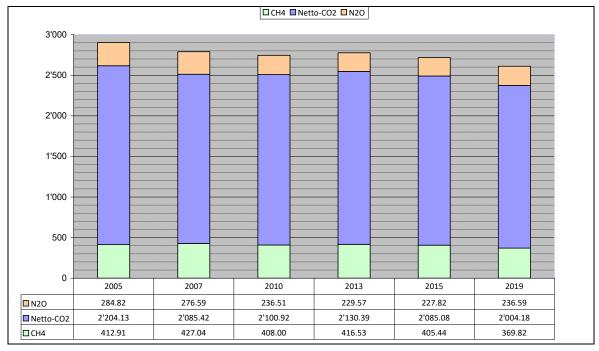


Abbildung 26: Trend des CO_2 -Äquivalent und seiner Komponenten in den Jahren 2005 - 2007 - 2010 - 2013 - 2015 und 2019 4

-

⁴ Die Werte für 2007, 2010 und 2013 wurden gegenüber früheren Berichten aktualisiert, um das Budget der Provinz für Erdgas im Industriesektor zu überarbeiten

Kohlenstoff-Absorption

Seit 2010 werden im Emissionskataster auch die CO₂-Absorptionen seitens der Landesforste berücksichtigt.

Das absorbierte Kohlendioxid (CO₂) wird mit negativem Wert ausgedrückt, insbesondere werden folgende kohlenstoffabsorbierende Beiträge der Tätigkeiten geschätzt: *lebende Biomasse* 41%, *Böden* 50% und *tote organische Substanz* 8% (Abbildung 27).

Bei der in den vorausgehenden Abschnitten angeführten Analyse der CO₂-Emissionen wurde der Beitrag der Absorptionen nicht mitgerechnet, um nur die Emissionsbilanz zu berücksichtigen und einen Vergleich mit den Emissionskatastern vor der Schaffung des Moduls Forste vornehmen zu können. Eine Abschätzung der Gesamtemissionen, bei der auch der Effekt der Absorptionen berücksichtigt wird, ist in Tab. 9 dargestellt, wo für das CO₂-Äquivalent der bedeutende Beitrag der Landwirtschaft vermerkt ist.

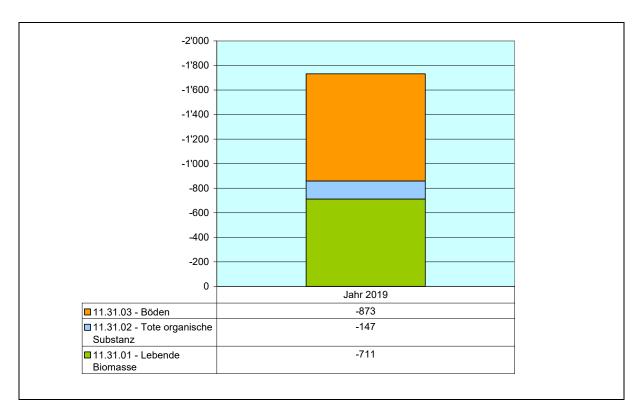


Abbildung 27: CO₂-Absorption von Hauptgruppe 11 (kt)

Hauptgruppe	CO ₂ (kt)	CO ₂ eq (kt)
01 - Energieumwandlung	113,27	139,56
02 - Nicht-industrielle Verbrennungsprozesse	404,57	445,04
03 - Industrielle Verbrennungsprozesse	310,64	311,88
04 - Produktionsprozesse	3,05	3,17
05 - Verteilung von Brenn- und Kraftstoffen		32,29
06 - Verwendung von Lösungsmitteln		
07 - Straßenverkehr	1.107,99	1.122,17
08 - Andere mobile Quellen und Maschinen	46,86	48,10
09 - Abfallbehandlung und –entsorgung	17,79	55,83
10 - Landwirtschaft		449,69
11 - Biogene Quellen	- 1.731,39	- 1.728,34
Gesamt	272,79	879,38

Tab. 9: Netto- CO_2 -Emissionen und Emissionen von CO_2 -Äquivalent ohne den absorbierten Anteil

Anhang

Sekundärschadstoffe

Sekundärschadstoffe werden nicht direkt aus den Quellen emittiert, sondern bilden sich durch chemische Reaktionen in der Atmosphäre. Aus diesem Grunde ist der sekundäre Anteil der Schadstoffe nicht im Emissionskataster berücksichtigt. Da sie die Luftqualität jedoch in entscheidendem Maße beeinflussen, werden sie nachfolgend kurz erläutert.

Sekundärer Feinstaub (PM10 und PM2,5)

Sekundärer Feinstaub entsteht in der Atmosphäre durch chemische Reaktionen von Luftschadstoffen wie Ammoniak, Schwefeldioxid, Stickstoffoxiden oder gasförmigen Kohlenwasserstoffen (VOC). Die Reaktionsprodukte dieser Stoffe sind Ammoniumsulfate und Ammoniumnitrate sowie Aldehyde und Ketone als Oxidationsprodukte der NMVOC. Diese Stoffe lagern sich leicht an bereits in der Atmosphäre befindliche Kondensationskerne an und bilden so sekundären Feinstaub.

Sekundäre Teilchen sind in der Lage, große Entfernungen zu überwinden und tragen durch den Ferntransport zu Luftbelastungen an weit von der Quelle entfernten Orten bei.

Sekundäres Stickstoffdioxid (NO₂)

Bei allen Verbrennungsprozessen entstehen als Nebenprodukt Stickstoffoxide, welche sich aus den Schadstoffen NO und NO_2 zusammensetzen. Der überwiegende Teil des emittierten NO_x ist das NO, dessen Anteil zum Beispiel bei Kraftfahrzeugemissionen bei über 90% liegen kann. Durch das Vorhandensein von O_3 oder Peroxy (RO_2)-Radikalen in der Atmosphäre wird dieses NO zu NO_2 umgewandelt:

$$NO + O_3;(RO_2) \rightarrow NO_2 + O_2;(RO)$$

Zwar wird das gebildete NO_2 durch Photolyse rückverwandelt ($NO_2 + hv + O_2 \rightarrow NO + O_3$), allerdings sind einerseits die Geschwindigkeiten der beiden Reaktionen unterschiedlich, andererseits hängen sie sehr stark von der jeweiligen

Ozonkonzentration bzw. der jeweiligen Strahlungsintensität ab. So wird das NO in der Nacht durch das vorhandene Ozon fast vollständig in NO₂ überführt, da die NO₂-Photolyse und somit die Rückbildung des NO's nicht stattfindet. Diese unterschiedlichen Umwandlungsgrade können im Laufe eines Tages zu deutlichen Schwankungen der NO₂-Konzentration führen.

Ozon (O_3)

Ozon ist ein besonderes Gas, das in normalen Konzentrationen wohltuende Auswirkungen auf das Leben hat. Denn in sehr großer Höhe (Stratosphäre) dient es dazu, die Erde vor den ultravioletten Strahlen zu schützen, die für das organische Leben schädlich sind, während es in geringer Höhe (Troposphäre) dazu dient, die Atmosphäre vor schädlichen Mikroorganismen (z.B. Bakterien) oder anderen organischen Stoffen frei zu halten.

Dieses Gas wirkt jedoch in hohen Konzentrationen toxisch auf das organische Leben und ruft Reizungen der Atemwege und Schleimhäute hervor und schädigt auch Pflanzenzellen und nicht zuletzt Baustoffe (z.B. Denkmäler).

Ozon zählt zu den klimarelevanten Gasen und wird im Unterschied zu Feinstaub und Stickstoffdioxid zur Gänze erst in der Atmosphäre gebildet.

In der Stratosphäre, wo Ozon in sehr hohen Konzentrationen vorhanden ist, bildet es sich unter Einwirkung von ultravioletter Strahlung aus Sauerstoff (Ozonschicht). Das bodennahe Ozon hingegen entsteht unter Einwirkung von UV-Strahlung aus NO₂ und O₂ aufgrund des im vorstehenden Kapitel über das NO₂ beschriebenen Prozesses der Photolyse.

Das Vorhandensein von flüchtigen organischen Kohlenwasserstoffen (VOC) in der Atmosphäre kann die Tendenz zur Ozonbildung verstärken, da diese zu einer Oxidation des gebildeten NO führen können, welches somit für die Reduktion von O_3 zu O_2 (NO + O_3 \rightarrow NO₂ + O_2) nicht mehr zur Verfügung steht. Dies führt dazu, dass die höchsten Ozonkonzentrationen dort anzutreffen sind, wo intensive Sonnenstrahlung auf geringe NO- oder hohe VOC- Konzentrationen trifft.